Code: MEMD1T3

I M. Tech - I Semester - Regular Examinations - April, 2015

MECHANICS OF COMPOSITE MATERIALS (MACHINE DESIGN)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) What are the constituents in a typical composite material?

 Give the classification of the composite materials. 7 M
 - b) Explain how the fiber reinforced composite materials are different from particle reinforced composite materials and list their applications.

 7 M
- 2. a) Explain the characteristics of the two most common polymer matrix materials used with high performance reinforcing fibers.
 7 M
 - b) List out different reinforcement materials used in composite materials. Discuss their specific applications.

7 M

3. Discuss in detail any two methods of manufacturing thermosetting resin matrix composite materials. 14 M

- 4. a) For a unidirectional lamina in the state of plane stress, express the stress-strain relations in material coordinate system.

 8 M
 - b) A unidirectional lamina is loaded under a uniaxial stress $\sigma_1 = \sigma_0$, and principal strains ε_1 and ε_2 are measured. Compute transverse strain ε_2' of the same lamina loaded under biaxial normal stresses $\sigma_1 = \sigma_2 = \sigma_0$ as a function of ε_1 and ε_2 obtained before and the modulus ratio $k_E = E_1/E_2$.
- 5. a) Deduce transformation relations for elastic constant, E_x in terms of engineering constants $(E_1, E_2, G_{12}, v_{12} \text{ and } v_{21})$. 8 M
 - b) Explain Tsai-Hill failure mechanism of laminated composites.
- 6. a) Explain the effect of fiber volume fraction and the modulus of fibers on Young's modulus of composite lamina. 7 M
 - b) Discuss the influence of change in temperature on unidirectional composites.

 7 M

7. Compute all terms of extensional stiffness matrix, coupling stiffness matrix and bending stiffness matrix for a [0/90] laminate with the following lamina properties.

$$E_1 = 145$$
 GPa; $E_2 = 105$ GPa; $G_{12} = 7.5$ GPa; $V_{12} = 0.28$; lamina thickness: $t = 0.25$ mm

- 8. a) Discuss the three different types of failures of a laminated composite.

 6 M
 - b) Explain the general design methodology for a structural composite material.